The reverse-delete algorithm is an algorithm in graph theory used to obtain a minimum spanning tree from a given connected, edge-weighted graph. It first appeared in , but it should not be confused with Kruskal's algorithm which appears in the same paper. If the graph is disconnected, this algorithm will find a minimum spanning tree for each disconnected part of the graph. The set of these minimum spanning trees is called a minimum spanning forest, which contains every vertex in the graph.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Reverse-delete algorithm (en)
|
rdfs:comment
| - The reverse-delete algorithm is an algorithm in graph theory used to obtain a minimum spanning tree from a given connected, edge-weighted graph. It first appeared in , but it should not be confused with Kruskal's algorithm which appears in the same paper. If the graph is disconnected, this algorithm will find a minimum spanning tree for each disconnected part of the graph. The set of these minimum spanning trees is called a minimum spanning forest, which contains every vertex in the graph. (en)
|
sameAs
| |
dbp:wikiPageUsesTemplate
| |
Subject
| |
gold:hypernym
| |
prov:wasDerivedFrom
| |
Wikipage page ID
| |
page length (characters) of wiki page
| |
Wikipage revision ID
| |
has abstract
| - The reverse-delete algorithm is an algorithm in graph theory used to obtain a minimum spanning tree from a given connected, edge-weighted graph. It first appeared in , but it should not be confused with Kruskal's algorithm which appears in the same paper. If the graph is disconnected, this algorithm will find a minimum spanning tree for each disconnected part of the graph. The set of these minimum spanning trees is called a minimum spanning forest, which contains every vertex in the graph. This algorithm is a greedy algorithm, choosing the best choice given any situation. It is the reverse of Kruskal's algorithm, which is another greedy algorithm to find a minimum spanning tree. Kruskal’s algorithm starts with an empty graph and adds edges while the Reverse-Delete algorithm starts with the original graph and deletes edges from it. The algorithm works as follows:
* Start with graph G, which contains a list of edges E.
* Go through E in decreasing order of edge weights.
* For each edge, check if deleting the edge will further disconnect the graph.
* Perform any deletion that does not lead to additional disconnection. (en)
|
foaf:isPrimaryTopicOf
| |
is Wikipage redirect
of | |
is Link from a Wikipage to another Wikipage
of | |