About: Quantum threshold theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In quantum computing, the quantum threshold theorem (or quantum fault-tolerance theorem) states that a quantum computer with a physical error rate below a certain threshold can, through application of quantum error correction schemes, suppress the logical error rate to arbitrarily low levels. This shows that quantum computers can be made fault-tolerant, as an analogue to von Neumann's threshold theorem for classical computation. This result was proven (for various error models) by the groups of Dorit Aharanov and Michael Ben-Or; , Raymond Laflamme, and Wojciech Zurek; and Alexei Kitaev independently. These results built off a paper of Peter Shor, which proved a weaker version of the threshold theorem.

AttributesValues
rdfs:label
  • Quantum threshold theorem (en)
rdfs:comment
  • In quantum computing, the quantum threshold theorem (or quantum fault-tolerance theorem) states that a quantum computer with a physical error rate below a certain threshold can, through application of quantum error correction schemes, suppress the logical error rate to arbitrarily low levels. This shows that quantum computers can be made fault-tolerant, as an analogue to von Neumann's threshold theorem for classical computation. This result was proven (for various error models) by the groups of Dorit Aharanov and Michael Ben-Or; , Raymond Laflamme, and Wojciech Zurek; and Alexei Kitaev independently. These results built off a paper of Peter Shor, which proved a weaker version of the threshold theorem. (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
has abstract
  • In quantum computing, the quantum threshold theorem (or quantum fault-tolerance theorem) states that a quantum computer with a physical error rate below a certain threshold can, through application of quantum error correction schemes, suppress the logical error rate to arbitrarily low levels. This shows that quantum computers can be made fault-tolerant, as an analogue to von Neumann's threshold theorem for classical computation. This result was proven (for various error models) by the groups of Dorit Aharanov and Michael Ben-Or; , Raymond Laflamme, and Wojciech Zurek; and Alexei Kitaev independently. These results built off a paper of Peter Shor, which proved a weaker version of the threshold theorem. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
is known for of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software