Quantum optimization algorithms are quantum algorithms that are used to solve optimization problems. Mathematical optimization deals with finding the best solution to a problem (according to some criteria) from a set of possible solutions. Mostly, the optimization problem is formulated as a minimization problem, where one tries to minimize an error which depends on the solution: the optimal solution has the minimal error. Different optimization techniques are applied in various fields such as mechanics, economics and engineering, and as the complexity and amount of data involved rise, more efficient ways of solving optimization problems are needed. The power of quantum computing may allow problems which are not practically feasible on classical computers to be solved, or suggest a consider
Attributes | Values |
---|
rdfs:label
| - Quantum optimization algorithms (en)
|
rdfs:comment
| - Quantum optimization algorithms are quantum algorithms that are used to solve optimization problems. Mathematical optimization deals with finding the best solution to a problem (according to some criteria) from a set of possible solutions. Mostly, the optimization problem is formulated as a minimization problem, where one tries to minimize an error which depends on the solution: the optimal solution has the minimal error. Different optimization techniques are applied in various fields such as mechanics, economics and engineering, and as the complexity and amount of data involved rise, more efficient ways of solving optimization problems are needed. The power of quantum computing may allow problems which are not practically feasible on classical computers to be solved, or suggest a consider (en)
|
sameAs
| |
dbp:wikiPageUsesTemplate
| |
Subject
| |
prov:wasDerivedFrom
| |
Wikipage page ID
| |
page length (characters) of wiki page
| |
Wikipage revision ID
| |
has abstract
| - Quantum optimization algorithms are quantum algorithms that are used to solve optimization problems. Mathematical optimization deals with finding the best solution to a problem (according to some criteria) from a set of possible solutions. Mostly, the optimization problem is formulated as a minimization problem, where one tries to minimize an error which depends on the solution: the optimal solution has the minimal error. Different optimization techniques are applied in various fields such as mechanics, economics and engineering, and as the complexity and amount of data involved rise, more efficient ways of solving optimization problems are needed. The power of quantum computing may allow problems which are not practically feasible on classical computers to be solved, or suggest a considerable speed up with respect to the best known classical algorithm. (en)
|
foaf:isPrimaryTopicOf
| |
is Wikipage redirect
of | |
is Link from a Wikipage to another Wikipage
of | |