In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If f is a function from real numbers to real numbers, then f is nowhere continuous if for each point x there is an ε > 0 such that for each δ > 0 we can find a point y such that 0 < |x − y| < δ and |f(x) − f(y)| ≥ ε. Therefore, no matter how close we get to any fixed point, there are even closer points at which the function takes not-nearby values.
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
sameAs | |
dbp:wikiPageUsesTemplate | |
Subject | |
gold:hypernym | |
prov:wasDerivedFrom | |
Wikipage page ID |
|
page length (characters) of wiki page |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
has abstract |
|
foaf:isPrimaryTopicOf | |
is Wikipage redirect of | |
is Link from a Wikipage to another Wikipage of |
|