About: Newell's algorithm     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:AnatomicalStructure, within Data Space : el.dbpedia.org associated with source document(s)

Newell's Algorithm is a 3D computer graphics procedure for elimination of polygon cycles in the depth sorting required in hidden surface removal. It was proposed in 1972 by brothers Martin Newell and Dick Newell, and Tom Sancha, while all three were working at CADCentre. In the depth sorting phase of hidden surface removal, if two polygons have no overlapping extents or extreme minimum and maximum values in the x, y, and z directions, then they can be easily sorted. If two polygons, Q and P, do have overlapping extents in the Z direction, then it is possible that cutting is necessary.

AttributesValues
rdf:type
rdfs:label
  • Newell's algorithm (en)
rdfs:comment
  • Newell's Algorithm is a 3D computer graphics procedure for elimination of polygon cycles in the depth sorting required in hidden surface removal. It was proposed in 1972 by brothers Martin Newell and Dick Newell, and Tom Sancha, while all three were working at CADCentre. In the depth sorting phase of hidden surface removal, if two polygons have no overlapping extents or extreme minimum and maximum values in the x, y, and z directions, then they can be easily sorted. If two polygons, Q and P, do have overlapping extents in the Z direction, then it is possible that cutting is necessary. (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
gold:hypernym
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • Newell's Algorithm is a 3D computer graphics procedure for elimination of polygon cycles in the depth sorting required in hidden surface removal. It was proposed in 1972 by brothers Martin Newell and Dick Newell, and Tom Sancha, while all three were working at CADCentre. In the depth sorting phase of hidden surface removal, if two polygons have no overlapping extents or extreme minimum and maximum values in the x, y, and z directions, then they can be easily sorted. If two polygons, Q and P, do have overlapping extents in the Z direction, then it is possible that cutting is necessary. In that case Newell's algorithm tests the following: 1. * Test for Z overlap; implied in the selection of the face Q from the sort list 2. * The extreme coordinate values in X of the two faces do not overlap (minimax test in X) 3. * The extreme coordinate values in Y of the two faces do not overlap (minimax test in Y) 4. * All vertices of P lie deeper than the plane of Q 5. * All vertices of Q lie closer to the viewpoint than the plane of P 6. * The rasterisation of P and Q do not overlap The tests are given in order of increasing computational difficulty. The polygons must be planar. If the tests are all false, then switch the order of P and Q in the sort, record having done so, and try again. If there is an attempt to switch the order of a polygon a second time, there is a visibility cycle, and the polygons must be split. Splitting is accomplished by selecting one polygon and cutting it along the line of intersection with the other polygon. The above tests are again performed, and the algorithm continues until all polygons pass the above tests. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software