About: Knaster–Tarski theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : el.dbpedia.org associated with source document(s)

In the mathematical areas of order and lattice theory, the Knaster–Tarski theorem, named after Bronisław Knaster and Alfred Tarski, states the following: Let (L,≤) be a complete lattice and let f : L → L be an monotonic function (w.r.t. ≤). Then the set of fixed points of f in L also forms a complete lattice under ≤. It was Tarski who stated the result in its most general form, and so the theorem is often known as Tarski's fixed-point theorem. Some time earlier, Knaster and Tarski established the result for the special case where L is the lattice of subsets of a set, the power set lattice.

AttributesValues
rdfs:label
  • Knaster–Tarski theorem (en)
rdfs:comment
  • In the mathematical areas of order and lattice theory, the Knaster–Tarski theorem, named after Bronisław Knaster and Alfred Tarski, states the following: Let (L,≤) be a complete lattice and let f : L → L be an monotonic function (w.r.t. ≤). Then the set of fixed points of f in L also forms a complete lattice under ≤. It was Tarski who stated the result in its most general form, and so the theorem is often known as Tarski's fixed-point theorem. Some time earlier, Knaster and Tarski established the result for the special case where L is the lattice of subsets of a set, the power set lattice. (en)
sameAs
dbp:wikiPageUsesTemplate
Subject
prov:wasDerivedFrom
Wikipage page ID
page length (characters) of wiki page
Wikipage revision ID
Link from a Wikipage to another Wikipage
has abstract
  • In the mathematical areas of order and lattice theory, the Knaster–Tarski theorem, named after Bronisław Knaster and Alfred Tarski, states the following: Let (L,≤) be a complete lattice and let f : L → L be an monotonic function (w.r.t. ≤). Then the set of fixed points of f in L also forms a complete lattice under ≤. It was Tarski who stated the result in its most general form, and so the theorem is often known as Tarski's fixed-point theorem. Some time earlier, Knaster and Tarski established the result for the special case where L is the lattice of subsets of a set, the power set lattice. The theorem has important applications in formal semantics of programming languages and abstract interpretation. A kind of converse of this theorem was proved by Anne C. Davis: If every order preserving function f : L → L on a lattice L has a fixed point, then L is a complete lattice. (en)
foaf:isPrimaryTopicOf
is Wikipage redirect of
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git151 as of Feb 20 2025


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Nov 11 2024, on Linux (x86_64-ubuntu_focal-linux-gnu), Single-Server Edition (72 GB total memory, 1 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software