Beeman's algorithm is a method for numerically integrating ordinary differential equations of order 2, more specifically Newton's equations of motion . It was designed to allow high numbers of particles in simulations of molecular dynamics. There is a direct or explicit and an implicit variant of the method. The direct variant was published by Schofield in 1973 as a personal communication from Beeman. This is what is commonly known as Beeman's method. It is a variant of the Verlet integration method. It produces identical positions, but uses a different formula for the velocities. Beeman in 1976 published a class of implicit (predictor–corrector) multi-step methods, where Beeman's method is the direct variant of the third-order method in this class.
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
sameAs | |
dbp:wikiPageUsesTemplate | |
Subject | |
prov:wasDerivedFrom | |
Wikipage page ID |
|
page length (characters) of wiki page |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage | |
has abstract |
|
foaf:isPrimaryTopicOf | |
is Wikipage redirect of | |
is Link from a Wikipage to another Wikipage of | |
is foaf:primaryTopic of |