In machine learning, automatic basis function construction (or basis discovery) is the mathematical method of looking for a set of task-independent basis functions that map the state space to a lower-dimensional embedding, while still representing the value function accurately. Automatic basis construction is independent of prior knowledge of the domain, which allows it to perform well where expert-constructed basis functions are difficult or impossible to create.
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
sameAs | |
dbp:wikiPageUsesTemplate | |
Subject | |
Link from a Wikipage to an external page | |
gold:hypernym | |
prov:wasDerivedFrom | |
Wikipage page ID |
|
page length (characters) of wiki page |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
has abstract |
|
foaf:isPrimaryTopicOf | |
is Wikipage redirect of | |
is Link from a Wikipage to another Wikipage of | |
is foaf:primaryTopic of |