In the mathematical field of group theory, Lagrange's theorem is a theorem that states that for any finite group G, the order (number of elements) of every subgroup of G divides the order of G. The theorem is named after Joseph-Louis Lagrange. The following variant states that for a subgroup of a finite group , not only is an integer, but also that its value is the index , defined as the number of left cosets of in . Lagrange's theorem — If H is a subgroup of a group G, then This variant holds even if is infinite, provided that , , and are interpreted as cardinal numbers.